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Summary. A Fock space multireference coupled cluster method based on incom- 
plete model spaces is described. Some of the essential computational aspects of 
the theory are discussed with the aid of the diagrammatic representation of the 
equations. An application to the calculation of ionization potentials and excita- 
tion energies of s-tetrazine is presented along with comparisons with conven- 
tional ab initio calculations and experimental results. 
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1. Introduction 

The standard single reference coupled cluster theory has been applied with great 
success in the calculation of electronic structure of atomic and molecular systems 
[1-2]. The restriction to a single reference function does, however, put a 
restriction on the types of states that can be studied. Even though in some cases 
the inclusion of higher excitations in the wave operator makes it possible to treat 
quasidegenerate cases in the single reference framework [3] this is not possible 
for more general multireference cases. Furthermore, even for open shells, the use 
of unrestricted Hartree-Fock (UHF) reference wavefunctions frequently leads 
to problems with spin contamination of the final correlated wavefunction. The 
use of more general reference determinants can be shown to alleviate this 
problem [4] but a more general coupled cluster theory should, by necessity, be of 
multireference type. 

Multireference coupled cluster theories can be divided into two main cate- 
gories, Hilbert space [5-8] and Fock space approaches [9-17]. Hilbert space 
approaches are focused on the description of a system with a fixed number of 
electrons. The model space is selected so as to include a few dominant configura- 
tions in the wavefunction, and the wave-operator and the effective Hamiltonian 
give information about a few states of the system. Fock space approaches, on the 
other hand, also attempt to describe the system when the number of electrons is 
allowed to change, and are geared towards calculating, directly, energy differ- 
ences such as ionization potentials, excitation energies, and electron affinities 
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between a rather large number of states. The two different approaches are thus 
complimentary in that they can provide us with different types of information of 
the system at hand. 

The way the model space is constructed is of crucial importance in all 
multireference approaches. If  the particular theory demands the use of a complete 
model space, where the selected "active" ~ectrons have to occupy all selected 
"active orbitals in all possible ways, one is frequently faced with the problem of 
intruder states. If, in order to circumvent this problem, a theory is constructed to 
use an incomplete model space one looses some of the potential flexibility inherent 
in the choice of a larger model space. In what follows we present a Fock space 
multireference coupled cluster (FSMRCC) method which allows the use of 
incomplete model spaces [ 18, 13, 17]. We comment on some of the computational 
aspects of the approach and we finally present an application to s-tetrazine which 
has been extensively studied with conventional ab initio methods. 

2. Theory 

The Fock space multireference coupled cluster theory for incomplete model spaces 
is based on the existence of a valence-universal wave-operator and the subsystem 
embedding condition (SEC) [19]. The normal ordered ansatz for the wave-oper- 
ator [11] leads to a decoupling of model spaces with different particle-hole rank, 
thus making the method computationally attractive. In the hierarchical solution 
of the equations, results can thus be used to construct useful intermediates which 
greatly simplify the iterative solution of the coupled cluster equations. 

We start by selecting a closed shell, single determinant wave function 10) (not 
necessarily Hartree Fock) to which we will refer the holes and particles of our 
formalism. By creating m particles and n holes from ]0) and taking the 
appropriate linear combinations to satisfy spin-symmetry we form model spaces 
of different particle-hole rank (m, n) with associated projection operators p(m,n) 
projecting onto the model space and projection operators Q(,,,n) projecting onto 
the orthogonal complement. Each model space describes a certain type of state 
in Fock space, e.g., the (0, 1) model space describes singly ionized states and the 
(1, 1) model space singly excited states. 

From a computational point of view we would like to be able to treat only 
a subset of all possible configurations and we thus divide our orbitals into four 
categories as shown in Fig. 1. It is usually straightforward to find a natural 
division for the orbital space but the selection of active and inactive orbital spaces 
is usually the most common source of subsequent convergence problems in the 
iterative solution of our equations. At this point it should be made clear that 
although the model spaces for the (0, 0), (0, 1) and (1, 0) are complete since they 
necessarily include all possible occupancies of electrons among the active orbitals, 
the ( 1, 1) model space is incomplete since it excludes all doubly, triply etc. excited 
determinants. The (1, 1) model space is, however, an example of what has been 
termed a quasicomplete model space [20, 8] in that it is complete with respect to 
a single vacancy in the active holes and a single occupation in the active particles. 

For each (m, n) sector of Fock space our zeroth order wave functions consists 
of linear combinations of the model space functions: 

d 
1//(re,n) \ 

j = l  
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Fig. 1. Division of orbital space into active and 
inactive groups 

We introduce a universal wave-operator which takes these model functions into 
exact solutions of the Schr6dinger equation: 

I g,~m,.) ) = ~2[ 7'~ ''") ) (2) 

It is important to note that here we do not impose intermediate normalization of 
the wavefunction. It was shown by Mukherjee [18] that such a condition is 
incompatible with the use of an incomplete model space and in general we have 
that: 

PF2P ¢ P (3) 

To generate the necessary determinants in the complementary Q(,,,.n) space we 
introduce "excitation" and "deexcitation" operators: 

k = 0  / = 0  
(4) 

T(kJ) = T~.n + T~2 k J) + T{3  k ' l )  + .  • . 

where the superscript (k, l) refers to the maximum number of  particle (k) and 
hole (1) destruction operators present and the subscript indicates the excitation 
or deexcitation level. 

Figures 2 and 3 give a graphical representation of the systematic generation 
of these operators. As perhaps most easily seen in Figs. 2 and 3, unlike ordinary 
single-reference CC theory, defined by th e purely excitation operators, T(°.m; the 
T ~°'1) and T °'°) operators have "annihilation" lines below the vertex of  the 
diagram. These may be easily understood as corresponding to having one less 
(0, 1), or one more electron (1, 0). When these operators would act upon the 
Fermi vacuum 10), they disappear. However, they contribute when applied to 
the N - 1 electron model function, ,/,(o.~) and the N + 1 electron model function w i o  

qjo.0) respectively. i0 
Just as in the single-reference case the series in Eq. (4) has to be truncated at 

some appropriate level. In terms of the operators in Eq. (4) we now write our 
ansatz for the universal wave-operator as: 

a = {e (5)  
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Fig. 2. Skeleton "excitation" operators. These operators are formed by adding hole-hole and/or 
particle-particle scattering lines to the basic excitation operators from the (0, 0) sector. When these 
additional scattering lines only involve active holes and/or particles the operator is of spectator type. 
The labels at the top of each column refer to the Fock space sectors where the operators are active. 
For the first row of diagrams we exclude diagrams giving rise to scattering within the model space 
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Fig. 3. Skeleton "deexcitation" operators. These operators are formed by adding hole-hole and/or 
particle-particle scattering lines to the basic excitation operators from the (0, 0) sector. When these 
additional scattering lines only involve active holes and/or particles the operator is of spectator type. 
The labels at the top of each column refer to the Fock space sectors where the operators are active 

where { } denotes normal  ordering o f  the operators with respect to the vacuum 
state 10). This normal  ordering prevents the operators occurring in S to contract 
amongst  themselves and can be shown to lead to a decoupl ing of  the Bloch 
equations for different sectors: 

H D P  (''''') - D H e ~ r P  (''' ')  = 0 (6) 
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where 

Heft = p(m,n)Q-IHQp(m,n) (7) 

is an effective Hamiltonian whose eigenvalues determine the energies of the 
system and whose eigenvectors give the linear expansion coefficients in Eq. (1). 

Introducing normal ordering for the Hamiltonian we get: 

( H  N + (OlUlO>)OP (m'') -- QP(m'n)Q-1(H N + (OlU[O))OP(m") = 0 
(8) 

HN~"2P <m'") ~ ~-2HN, effP (m'n) = 0 

One can further show that this equation holds for connected operators only, i.e.: 

( H  N Q)cP (m'') - ( QHN.¢~)cP (m'') = 0 (9) 

For conceptual as well as for computational reasons it is convenient to define: 

= e - ri2; T = S (°'°) (10) 

and one can easily derive the following Bloch equation from Eq. (8): 

(JqN ~)cP("")  --  ( ~I~N, eff)¢ p(m'n) = 0 (11)  

where we have defined a new operator, H-bar: 

E~N = (U u  e T)c,ope n (12)  

and a new effective Hamiltonian: 

,qN, oer = Ho -- (<01HI0> + (H eV)~,c~os~d) = Heer- E¢c (13) 

Ecc being the coupled cluster energy of the state defined by the reference 
function 10>. Diagonalizing the effective Hamiltonian in Eq. (13) we directly 
obtain the energy differences between our states defined by our (m, n) model 
space and the coupled cluster state defined by our (0, 0) model space function 
10>. 

Equation (11) forms the basis for deriving our working equations in our 
Fock space method. In what follows we will assume that the (0, 0) sector has 
been successfully solved and the operator in Eq. (12) has been constructed. In 
our computational applications we construct the one- and two-body parts of Eq. 
(12) and store them on disk for subsequent use in other Fock space sectors. We 
note, however, that the non-hermitean operator of Eq. (12) will have additional 
contributions of three-body, four-body etc. character. 

Let us analyze the equation for the (0, 1) and the (1, 1) sectors in Fock space 
in more detail. In what follows we will limit ourselves to the CCSD expressions 
which means that we will restrict our operators in S (m'') to be of one- and 
two-body type, i.e., the operators in the dashed triangle of Fig. 2 and the single 
deexcitation diagram for the (1, 1) sector in Fig. 3. In order to be able to 
decipher the diagrammatic expression about to be presented, Fig. 4 shows the 
interpretation of the graphical representations of the operators. 

For the calculation of ionization potentials, i.e., the (0, 1) sector, we find 
from Fig. 2 that two additional operators occur in the wave-operator. The T~ °'1), 
operator only occurs if the active hole space is smaller than the full hole space 
which is, however, generally the case. Note that the new two-body operator 
includes contributions from operators with a "spectator line", i.e. a single 
excitation combined with a "null" excitation of an electron in, say orbital i, into 
the same orbital. These operators are important to incorporate relaxation effects 
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d e f 

Fig. 4a-f.  Diagrammatic symbols. Orbital 
lines are labeled according to the 
categories in Fig. 1. Active holes and 
particles are depicted by double arrows 
(a), inactive holes and particles by 
encircled arrows (b) and when all holes 
and orbitals are to be included by plain 
arrows (c). Hamiltonian interactions are 
denoted by a dashed line (d), H-bar 
interaction lines are denoted by a wavy 

line (e) and excitations are denoted by 
solid lines (f) 

in the wavefunction, remembering that we are using the Hartree-Fock orbitals 
for the ground state to describe all states in Fock space. 

Taking the p(o,~) projection of Eq. (11) we can draw the diagrammatic 
expression for the effective Hamiltonian shown in Fig. 5. The diagonalization of 
this operator gives us the negative of the ionization potentials defined by the active 
hole model space functions. Projecting Eq. (11) with the one-body Q(O,1) space we 
obtain the Fock space coupled cluster equation for the (0, 1) one-body operator 
shown in Fig. 6. Note the occurrence of the renormalization term (6e) in this 
equation. The effective Hamiltonian is thus constructed in each step of the 
iterative solution of the coupled cluster equations and used as an intermediate. 

Projecting Eq. (11) with the two-body Q(0,1) space we similarly obtain the 
Fock space coupled cluster equation for the two-body amplitudes shown in Fig. 
7. Again we have a renormalization term, (Fig. 7h), but also a term originating 
from a three-body contribution to H-bar, diagram (Fig. 7g). Since we computa- 
tionally do not store the three-body terms of H-bar such a term has to be 
calculated "on the fly". This term and its corresponding term for the (1~ 0) sector 
are, however, the only contributing three-body terms in the CCSD approximation 
which explains the advantage of performing the transformation defined by Eq. 
(12). Just as for the (0, 0) sector the equations for the (0, 1) amplitudes are coupled 
and are solved by similar computational techniques. The equations for the ( 1, 0) 
sector can be obtained by reversing the direction of all lines in Figs. 5-7. 

F 

-0 
p 
p 

d 
Fig. 5a-d. Diagrammatic expressions for the 
(0, 1) effective Hamiltonian 
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the T~ amplitudes of the (0, 1) sector 

4- 

4- 

U + +[ 
k 

t 

V 
= 0  

Fig. 7 a - h .  
Diagrammatic 
expression for the T 2 
amplitudes of the (0, l) 
sector 
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Fig. 8a-e. Diagrammatic expression for the effective 
Hamiltonian for singly excited states 

For the (1, 1) sector we again have additional one- and two-body operators 
contributing to the wave-operator. The new two-body diagram, see Fig. 2, 
contributes as soon as our active space does not cover all available orbitals. The 
one-body diagram, see Fig. 3, describes a pure deexcitation to the vacuum state 
[0), and is, as we shall see, irrelevant for the calculation of the excitation 
energies. 

The p(1,1) projection of the Bloch equation (Eq. (10)) leads to the expression 
for the effective Hamiltonian shown in Fig. 8. Figures (8b) and (8c) are the 
effective Hamiltonians determined in the (0, 1) and (1, 0) subsectors. 

The equation for the new part of the effective Hamiltonian, diagram Fig. 
(8a), is given in Fig. 9. Figure (9a) contains contributions from the (0, 0), (0, 1) 
and (1, 0) subsectors and can therefore be treated as an intermediate with 
constant amplitudes throughout the evaluation of the (1, 1) sector. 

Figures 10 and 11 give the Fock space coupled cluster equation for the T~ 1'1) 
and T(21'~) amplitudes. Again, Figs. (9a) and (10a), contain the contributions 
from the lower subsectors. Note that there is no coupling between the one- and 
two-body T (l'J) operators which together with the fact that the effective Hamilto- 
nian is independent of T] ~'1) (see Fig. 9) means that the excitation energies are 
not influenced by this one-body operator. The equation defined by Fig. 10 is, 
however, of very small dimensionality and can easily be solved to obtain the full 
wave-operator for the (1, 1) sector. 

From Figs. 5-11 we find that the subsystem embedding condition gives rise 
to a rather compact set of equations. The computer code that can be generated 
from these expressions can therefore be kept fairly transparent and simple by the 
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d ~  Fig. 9a-d. 
Diagrammatic 
expression for 
the (1, 1) effec- 
tive Hamiltonian 
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Fig. 10a-d. 
Diagrammatic 
expression for the T~ 
amplitudes for the 
(1, 1) sector. See text 
for further discussion 

~¢ + 

C 

m I b l ,  + 1 

m = 0  

Fig. l l a - i .  Diagrammatic expression for the T 2 amplitudes of the (1, 1) sector. See text for further 
discussion 

cons t ruc t ion  and s torage o f  re levant  in te rmedia te  results. Also,  the typical  
compu te r  requi rements  for  F S M R C C  calcula t ions  are compa rab l e  to that  for a 
single reference CC calculat ion,  a l though  it can be more  difficult to converge the 
equat ions  in some cases because  o f  the requi rement  that  several  states be 
described.  
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Fig. 12. s-Tetrazine bond lengths and bond angles. 
For values of the parameters a, b, c, and 7 see 
Table 1 

3. Application to s-tetrazine 

We here present some results from an application of the method presented above 
to s-tetrazine (Fig. 12), which has been studied extensively experimentally since 
the first decades of this century [21, 22]. The s-tetrazine molecule has also been 
the subject of several ab initio electronic structure calculations and in Ref. [23] 
Scheiner and Schaefer presented a thorough review of both the theoretical and 
experimental status as well as a detailed configuration interaction (CI) study of 
the excited states for this molecule. Earlier, yon Niessen et al. [24] had investi- 
gated the photo-electron spectrum of the same system by the use of propagator 
techniques which together with the work in Ref. [23] gives us a point of 
comparison for our Fock space calculation. One of the distinguishing features of 
the present approach is of course that both spectra, along with information 
concerning electron affinities are obtained in one calculation, i.e., in the process 
of solving for excitation energies we obtain information concerning the other 
properties from intermediate steps. 

The ground state electronic configuration of s-tetrazine is given by: 
l b 2 1 a  2 2 2 2 2 2 2 2 2 2 lbBg  l b l u 2 a g 2 b ~ u 3 a g 2 b 2 u 3 b l u 2 b 3 g 4 a g 3 b ~ ,  2 2 5ag4blu lb2, 

2 2 4 b 2 ~ 6 a g 5 b 2 u  l b 2 g  2 2 0 0 l b 2 g 3 b B g  l a ~ 2 b 3 ~  

In our calculations we used the same basis set and geometries (Table 1) 
as in Ref. [23], i.e., a standard Huzinaga-Dunning DZ basis set [25] 
augmented with a set cartesian d-functions on the carbon and nitrogen 
atoms with exponents ec = 0.75, a N =0.80 along with a set of p-functions 
with 7/~ = 0.75 on the hydrogens. We selected the six highest occupied orbitals 
to be our active hole space and the two lowest virtual orbitals to be our active 
particle space. Consequently, we will obtain six ionization potentials, 

Table 1. Geometry from Ref. [23] used in the calculations. For 
bond lengths and bond angles refer to Fig. 1 

DZP SCF parameters Experiment 

a 1.0743 ~ 1.0726 
b 1.3215 ~ 1.3405 
c 1.2923 ,~, 1.3256 

125.19 ° 126.36 ° 
a DZP SCF parameters Experiment 
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Table 2. Vertical ionization potentials in eV for s-tetrazine (SCF geometry) 

479 

Electronic state TDA" GF a FSMRCC Experiment 
(DZP) 

2B3g 8.91 9.24 9.20 9.7 
2Bi. 11.40 11.97 11.87 11.9 
292g 12.18 12.52 12.12 12.1 
2Ag 12.21 12.64 12.69 12.8 
2Bz. 12.34 12.89 13.01 13.3 
2Big 13.12 13.47 13.52 13.5 

a Ref. [24] 

two electron affinities, twelve singlet excitation energies and twelve triplet excita- 
tion energies. 

Table 2 gives our results for the ionization potentials obtained from the (0, 1) 
Fock space sector. As is noted in Ref. [24] to make assignments of the 
photo-electron spectrum for s-tetrazine based on Koopmans' theorem "is as 
useful as looking it up in a telephone directory". A correlated method is 
necessary in order to even get the correct qualitative description of the spectrum. 
Our results are in general agreement with the Green's function calculation of von 
Nissen et al. [24] except for the ionization from the 3b2g orbital where the 
difference is 0.4 eV. The agreement with experiment is also good except for the 
first ionization potential. Errors up to 0.3 eV might be reasonable, but we 
seriously doubt if our predicted first IP is in error by 0.5 eV, recommending a 
reconsideration of the observed ionization threshold. 

In order to get the excitation energy spectrum we also solve the (1, 0) sector 
as an intermediate step. Our calculations gave a positive vertical electron affinity 
of 0.17eV using electron attachment to the la, orbital, hence indicating a 
possible stable anionic state. The basis set used is not, however, expected to 
describe anions well and this conclusion must be treated with some skepticism, 
although typically EAs are underestimated in ab initio calculations. 

Tables 3 and 4 present the singlet and triplet excitation energies with the 
chosen model space. The trends for both the singlet and triplet states are clear. 
For all except two of the triplet states, the SCF excitation energies are larger 
than the correlated energies. The use of the Davidson correction for unlinked 
diagrams in the CI calculation (CISD + Q) further reduces the transition ener- 
gies for all except the same two states as compared to CI. The Fock space results 
which rigorously eliminate all unlinked diagrams, show the same general trend 
but are in general substantially lower than the CI results, giving rise to a much 
better agreement with the experimental numbers. One state stands out in this 
comparison. The CI calculations of the 3Blu s ta te  indicates the correlated 
excitation energy is larger than the corresponding SCF number, whereas the 
Fock space coupled cluster results give the opposite result. This is an example 
where the single reference description breaks down completely. After analyzing 
the Fock space multireference wavefunction one finds that there are two equally 
important dominant configurations for this state resulting from the lb2g-.2b3, 
and lblg ~ la, substitutions. A multireference description is therefore recom- 
mended, causing the CI calculations to be a poorer approximation. As a further 
indication of the importance of multireference effects we found that the two 
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Table 3. Vertical singlet excitation energies in eV for s-tetrazine. SCF geometry, DZP basis set. 
CISD + Q refers to a CI calculation including the Davidson correction (adiabatic excitation energies 
in parenthesis) 

Electronic state SCF a CISD" CISD + Q~ FSMRCC Experiment 

1 B3 u 

3b3g --* 1% 3.78 3.11 2.89 (2.80) 2.28 
IA u 
3b3g ~ 2b3. 5.40 4.46 4.13 3.44 
IBlg  

5bi. ~ la .  7.21 6.24 5.85 4,98 
I B2 u 

lb2x ~ la .  7,25 6,71 6.38 (6.38) 5.25 
IB2x 
4b2. --' l a .  7.89 7.89 6.72 (5.54) 5.77 (4.80) 
tA u 
6ax ~ la .  5,83 
1 B2g 

5bl. ~ 2b3. 6.29 
1 B3 u 

6ag ~ 2b3, 6.92 
I n l g  

4b2, ~ 2b3, 7.26 
I n lu  
lb2g ~ 2b3,, 8.64 8.27 8.10 7.91 
In lu  

lblg ~ lau 8.48 
1 B2 u 

Iblx --" 2b3, 9.21 

(2.25) 

(4.43-5.40) 

(3.88/4.06) 

a Ref. [231 

states that showed the next largest discrepancies between the CI and coupled 
cluster numbers, 3B2g a n d  J B2,, were also the two other states that had substan- 
tial multireference character. Sheiner and Schaefer also investigated how the shift 
in equilibrium geometry of the excited states affected their transition energies and 
found that for all the experimentally known states only the ~B2g energy was 
substantially changed. Although the FSMRCC method is geared towards verti- 
cal excitation energies we performed a separate calculation for this state. As can 
be seen from Table 3 the adiabatic transition energy for this state is about 1 eV 
lower than the vertical excitation energy. Although the adiabatic calculation 
reduced the discrepancy between our calculation and the experimental result the 
difference is still substantial and further investigations are necessary for this 
state. In particular, its relatively high energy suggests the importance of a 
Rydberg character that is not well described without adding diffuse basis 
functions to the current basis set. For  other states where experimental results are 
available the coupled cluster energies fair well and far better than the CI results. 
A further advantage of our multireference treatment is borne out by the fact that 
we obtained several states of the same symmetry in contrast to the CI calcula- 
tion. Several of these states fall in the same energy range as the lower roots as 
can be seen in Tables 3 and 4. 
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Table 4. Vertical triplet excitation energies in eV for s-tetrazine. SCF geometry, DZP basis set. 
CISD + Q refers to a CI calculation including the Davidson correction (adiabatic excitation energies 
in parenthesis) 

Electronic state SCF a CISD a CISD + Q~ FSMRCC Experiment 

3B3u 
3b3g --* la .  3.09 2.44 2.23 (2.15) 1.48 
3A u 

3b3g ~ 2b3u 5.11 4.21 3.89 3.14 
3Blu 
lb2g ---~ 263. 4.82 5.10 5.14 3.97 
3Big 
5blu --* la .  6.35 5.43 5.08 3.99 
3B2u 
lb2g ~ la ,  4.20 4.69 4.86 4.88 
3B2g 
4b2, ~ lau 7.33 6.55 6.25 5.01 
3A u 

6ag ~ 1% 5.30 
3nlu 
lblg --* la ,  5.74 
3B2g 
5bl. --* 2b3. 6.21 
3B3u 
6ag ~ 2b3u 6.75 
3Big 
4b2. ~ 2b3~ , 7.22 
3 B2u 
lblg -* 2b3, 7.82 

(1.69) 

a Ref. [23] 

4. Conclusions 

We have presented a Fock space multireference coupled cluster method for 
incomplete model spaces in some detail. The equations for calculating ionization 
potentials as well as excitation energies were presented diagrammatically and 
some of the computational advantages of the method were emphasized. Our 
present application to s-tetrazine exemplifies how the method can successfully 
give several properties of a system and how due to its multireference character 
we obtain a large number of energy differences as well as the flexibility of 
describing states where a single reference description fails completely. 
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